EXPLORATION

Scientists unravel formation of Olympic Dam orebody

Scientists have discovered why some of the richest ore deposits on the planet, such as copper, zi...

Staff reporter

This article is 7 years old. Images might not display.

A team of scientists from the University of Tasmania and University of California, led by Emeritus Professor Ross Large from the ARC Centre of Excellence in Ore Deposits (CODES), has shown that the rise of oxygen in the atmosphere 2.3 to 1.8 billion years ago caused not only a change in the evolution of life, but also a dramatic shift from the formation of iron, gold and nickel ore deposits to zinc, silver, copper and uranium ore deposits.

Some of Australia’s biggest and richest ore deposits at Broken Hill (zinc-lead-silver), Olympic Dam, (copper-uranium), Ranger (uranium) and Mt Isa (copper-zinc-lead-silver) formed after this switch.

Professor Large and his team have been tracking the level of oxygen in the Earth’s ancient atmosphere using a laser-based analytical technology developed in the University of Tasmania laboratories.

The technology helped to determine changes in the chemistry of pyrite that grew in seafloor muds billions of years ago. The subtle changes they recorded tracked the ups and downs of oxygen in the ancient atmosphere.

The team has shown that giant ore deposits of gold, iron and nickel formed in the oldest (Archean) rocks when oxygen was very low in the atmosphere and oceans.

In contrast, when oxygen increased dramatically following the Great Oxygenation Event, about two billion years ago, the amount of sulphate and salt increased in crustal fluids and there was a switch to giant deposits of copper, zinc, silver and uranium.

Professor Large believes that the basic reason for the switch is very simple.

“Copper, zinc, silver and uranium are readily mobile in oxygen-rich and salty crustal fluids, which were plentiful during middle Earth history, whereas gold and iron are only mobile in low oxygen crustal fluids, like the most ancient fluids, that preceded the Great Oxygenation Event,” he said.

“We now have a much better idea of how oxygen changed in the ancient atmosphere and how this relates to the generation of large and rich ore deposits in ancient rocks.

“Australia has extensive areas of rocks deposited after the Great Oxygenation Event and our research provides a new lead to assist geologists in the discovery of rich deposits of copper, zinc and uranium.”

The research was funded by the Australian Research Council and recently published in the journal of Economic Geology

A growing series of reports, each focused on a key discussion point for the mining sector, brought to you by the Mining Magazine Intelligence team.

A growing series of reports, each focused on a key discussion point for the mining sector, brought to you by the Mining Magazine Intelligence team.

editions

Mining Magazine Intelligence: Automation and Digitalisation Report 2024

Exclusive research for Mining Magazine Intelligence Automation and Digitalisation Report 2024 shows mining companies are embracing cutting-edge tech

editions

ESG Mining Company Index: Benchmarking the Future of Sustainable Mining

The ESG Mining Company Index report provides an in-depth evaluation of ESG performance of 61 of the world's largest mining companies. Using a robust framework, it assesses each company across 9 meticulously weighted indicators within 6 essential pillars.

editions

Mining Magazine Intelligence Exploration Report 2024 (feat. Opaxe data)

A comprehensive review of exploration trends and technologies, highlighting the best intercepts and discoveries and the latest initial resource estimates.

editions

Mining Magazine Intelligence Future Fleets Report 2024

The report paints a picture of the equipment landscape and includes detailed profiles of mines that are employing these fleets