TECHNOLOGY

ASI augments algorithm for autonomous obstacle avoidance

Occlusion mapping algorithm to help detect drop-offs and large negative obstacles

Staff reporter

This article is 5 years old. Images might not display.

ASI said it had developed a method for mapping point cloud occlusions in real time.

When navigating through environments, autonomous vehicles rely on sensor data that represents the 3-D space surrounding the machine. Some details can be obscured by objects or terrain, thus producing gaps in the sensor field of view.

These gaps, or occlusions, can indicate the presence of obstacles, negative obstacles or rough terrain.

ASI perception tech lead Taylor Bybee said its improved algorithm could provide "additional accuracy and safety when integrated into an autonomous vehicle obstacle-detection and -avoidance system".

As occlusions can be defined as a blockage that prevents a sensor from gathering data in a location, they can be seen as shadows in LiDAR data.

ASI said information about the occlusions could be inferred from using an occlusion mapping algorithm to provide the navigation system with a more complete model of the environment.

"While sensor data itself doesn't tell us what's in the occluded areas, occlusions can represent negative obstacles like drop-offs or areas behind large obstacles," ASI CTO Jeff Ferrin said.

"It's important to identify these areas for obstacle detection and avoidance to work properly."

The new technology could be useful in settings with dump edges at mine sites, steep road edges, canals, ditches, hills or stairs for indoor or urban environments.

As part of the new algorithm, a sensor field-of-view (FOV) model describes what obstacles the sensors are expected to detect. This component is designed for point cloud sensors such as 3-D LiDAR, flash LiDAR, structured light and stereo cameras.

In addition, an occlusion map is maintained and updated using the sensor FOV model and current sensor data to provide a probabilistic estimate on areas that have not been detected within the sensor FOV.

The third component, ASI said, was the integration of the occlusion map into an autonomous vehicle navigation system. It is also designed to work with and complement existing obstacle detection and avoidance systems.

A growing series of reports, each focused on a key discussion point for the mining sector, brought to you by the Mining Magazine Intelligence team.

A growing series of reports, each focused on a key discussion point for the mining sector, brought to you by the Mining Magazine Intelligence team.

editions

Mining Magazine Intelligence: Automation and Digitalisation Report 2024

Exclusive research for Mining Magazine Intelligence Automation and Digitalisation Report 2024 shows mining companies are embracing cutting-edge tech

editions

ESG Mining Company Index: Benchmarking the Future of Sustainable Mining

The ESG Mining Company Index report provides an in-depth evaluation of ESG performance of 61 of the world's largest mining companies. Using a robust framework, it assesses each company across 9 meticulously weighted indicators within 6 essential pillars.

editions

Mining Magazine Intelligence Exploration Report 2024 (feat. Opaxe data)

A comprehensive review of exploration trends and technologies, highlighting the best intercepts and discoveries and the latest initial resource estimates.

editions

Mining Magazine Intelligence Future Fleets Report 2024

The report paints a picture of the equipment landscape and includes detailed profiles of mines that are employing these fleets